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Fluids with Highly Directional Attractive Forces. 
II. Thermodynamic Perturbation Theory and 
Integral Equations 
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The formalism of statistical thermodynamics developed in the preceding paper is 
used as a basis for deriving tractable approximations. The system treated is one 
where repulsion and highly directional attraction due to a single molecular site 
combine to allow the formation of dimers, but no higher s-mers. We derive 
thermodynamic perturbation theory, using the system interacting with only the 
repulsive potential as a reference system. Two distinct integral equations for the 
pair correlation are derived. The first one treats both parts of the interaction 
approximately; the other one employs the repulsive reference system used in 
perturbation theory. We show that each of these integral equations permits the 
calculation of an important thermodynamic function directly from the solution 
at a single state of density and temperature. In the first case this applies to a 
pressure consistent with the compressibility relation, in the second to the excess 
Helmholtz free energy over the reference system. 

KEY WORDS: Highly directional forces; association; dimers; thermody- 
namic perturbation theory; integral equations, 

1. I N T R O D U C T I O N  

In  the  p r e c e d i n g  paper ,  (1) r e fe r r ed  to in the  text  as I, we  h a v e  d e v e l o p e d  a 

r e f o r m u l a t i o n  of  s ta t i s t ica l  t h e r m o d y n a m i c s  su i tab le  for  sys tems  of  mo le -  

cules  wi th  h i g h l y  d i r ec t i ona l  a t t r ac t i ve  forces  w h i c h  p r o m o t e  a s soc i a t i on  

in to  d imers ,  a n d  poss ib ly  h i g h e r  s -mers .  T h e  deg ree  of  d i f f icu l ty  in t rans la t -  
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ing the formalism into reasonable approximation theories is highly corre- 
lated with the complexity of the class of sterically allowed s-mers. 

The simplest case is that where the only nonvanishing pure s-met 
graph is the dimer graph. For such systems the situation is very favorable 
indeed, and we are able to produce reasonable approximation schemes 
which contain number density 0 and monomer density P0 as parameters. In 
ease of application these schemes are competitive with the more usual ones, 
which are based on P alone. Unlike the latter ones, they incorporate an 
exact treatment of the otherwise very troublesome limit of a dilute, but 
highly dimerized gas. 

In the following we derive approximation schemes of two types: 
thermodynamic perturbation theory, and integral equations for the pair 
correlations. The type of integral equation chosen depends on whether or 
not a reference system is used. Each integral equation is accompanied by a 
method of calculating thermodynamic properties directly from the solution 
at a single state (O,/3). In the final section we briefly mention the possible 
alternatives to be faced in dealing with the much more complicated 
situation where higher s-mers are allowed. 

For notation and definitions, reference should be made to I. 

2. EXPRESSIONS FOR Po 

The derivation of approximation theories is carried out in the represen- 
tation where the Helmholtz free energy A and the pair correlation functions 
c,y(12) and h,j(12) are written as infinite sums of graphs free of articulation 
points. According to (14) of I, each field point i of a graph then carries a 
factor p(i) if it is a monomer point, po(i) if it is an s-mer point, s >/2. The 
approximations derived are formulated in terms of O, O0, fi, and the h,j(12) 
and /o r  c/j(12). For given P and fl the monomer density 00 is not a free 
parameter and must be determined in a self-consistent manner. 

The starting point for doing this is Eq. (13) of I, which may be written 

p(1)/po(1 ) = 1 + Cl(l ) (l) 

where we recall from I that el(1 ) consists of all irreducible graphs with one 
labeled point 1, which is an s-mer point, s/> 2. The enormous simplification 
which occurs when s-mer graphs for s > 2 vanish occurs in the following 
way. The restriction to dimers implies that there is exactly one F-bond 
incident on the point 1. By turning the 
into a point labeled 2 and deleting the 
graphs in g0o(12). Hence, 

c1(1) = ~" goo(12)fa 
J 

point where the F-bond originates 
factor fA(12) we obtain exactly all 

(12)po(2) d(2 ) (2) 
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No such simple expression in terms of pair correlations alone is available 
when higher s-mers are present. 

The combination of (1) and (2) provides the required self-consistent 
relation for the monomer density: 

p(1) = po(1) + p0(1)f goo(12)f A (12)po(2) d(2) (3) 

In the low-density limit, goo(12) may be replaced by the leading graph, 
eR(12 ). Equation (3) then becomes 

p(l)  = Oo(1) + Oo(1)fF(lZ)po(2) a(2)  (4) 

which is the mass action law of chemical equilibrium. 

3. T H E R M O D Y N A M I C  P E R T U R B A T I O N  T H E O R Y  

Numerous successful applications of thermodynamic perturbation the- 
ory (TPT) have been made to simple, multipolar and polar polarizable 
fluids. 3 In the usual spirit of TPT, we choose as reference system a system 
of molecules at the p and/3 of the real system, but interacting only with the 
repulsive potential q~R(12). Part of/3A is given by the graph sum - c  (~ in 
which the bonds are fR-bonds and/or  F-bonds. We order by ascending 
number of F-bonds and truncate the series. To first order in F we obtain 

c (~ = c~ ~ + �89 + . . .  (5) 

= f gR (12)fA (12)p0(2) d(2) + " '"  el(l) (6) 

Equation (6) implies a self-consistent po(1) given by 

0(])  = po(1) + po(1)fgR(12)L(lZ)Oo(2)d(2) (7) 

which amounts to inserting the approximation goo(12)= gR(12) in (3). In 
the low-density limit, even if highly dimerized, we have gR(12) = eR(12), 
which reduces (7) to the correct limiting form (4). 

By using Eq. (21) of I for both the real system and the reference 
system, we obtain for the difference in free energies 

~ ( A - A R )  = f l  p(1)ln P~ l o(1--5- - Oo(1) + 0(1) d ( l )  - c ~~ + 4 ~ (8) 

Use of (5) and (7) reduces (8) to the form 

f l (A  - AR)  = X(lnx - �89 + �89 x = PUP (9) 

3 For references to TPT see Ref. 2. 
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where N is the total number of monomeric units, whether free or bound in 
a dimer. The ratio x is determined by Eq. (7). In this very simple result the 
packing effect due to size of the repulsive core enters only by the effect of 
gR(12) on x. 

This is physically reasonable when T is not too low, so that the main 
effect of hard particle packing is the increase, relative to point particles at 
the same density, of close encounters which favor dimerization. At lower T, 
undoubtedly terms with more than one F-bond become important. The 
graphs with two F-bonds involve four-particle correlations of the reference 
system. Since in practice this would have to be approximated by a type of 
superposition, it is simpler and more promising to effect a partial summa- 
tion of graphs to all orders in F by an integral equation. This program is 
carried out in Section 4.2. 

4. INTEGRAL EQUATIONS 

The statistical thermodynamics of associating systems in terms of 0 
and 00, as developed in I, shows many parallels to classical fluid theory 
based on 0 alone. In particular, we obtained a matrix analog of the 
Ornstein-Zernike equation, of the form 

= c/j(12) + .;%(13)Ok,(3)ho(32) d(3) (10) hlj(12) 

where P00 = O, 001 = 010 = O0, and O~ = 0. In (10) and the rest of this paper 
we adhere to the convention that summation over repeated indices is implied. 

In the special case of the dimerizing gas we can go much further. The 
restriction to at most one F-bond incident on each point makes it possible 
to achieve a substantial graph sum by combining (10) with relatively simple 
closure equations. In designing closures we are guided by past successes of 
the integral equation method for theories involving O alone. 

An important aspect of integral equation theories is the calculation of 
thermodynamic quantities. For the HNC equation 4 Morita and Hiroike (3) 
showed how to compute a free energy A from the solution of the equation 
at a single state (P, fi)- The A obtained this way is consistent with the virial 
pressure p and the internal energy U as obtained from g(12)~(12). For the 
Percus-Yevick (PY) equation 4 Baxter (n) obtained a similar result for a 
pressure p consistent with the compressibility relation. For the SSC equa- 
tion 4 expressions for A - A  R, p - - p R ,  and U -  U R were derived by 
Wertheim. (5) All of these results use integration by parts to transform a 
coupling constant integration into a form which depends only on the 
solution at the end points. In the case at hand this procedure is complicated 

4 See Refs. 1-8 in I for the PY, HNC,  and SSC equations. 
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by the fact that P0 varies as either p or the pair potential is varied. 
Nevertheless, it has proved possible to carry out this very important part of 
the program for the two integral equations proposed here. 

4.1. Integral Equations without Reference System 

Here we deal with the entire interaction by an integral equation. Since 
the PY equation does well for hard spheres, it is reasonable to adopt a 
closure which reduces to the PY equation when fA = 0. The following 
system is similar to and suggested by our earlier work on hard diatomics. (6) 
The structure here is somewhat simpler, there being only two, as compared 
to four, terms in the decomposed f-function. We define 

y0(12) = 60it0j + (graphs with no direct 12-bond) (11) 

By splitting into reducible and irreducible parts, we obtain 

y~(12) -- [ g~)(12) - c~j(12)] + Z~(12) (12) 

where the bracket contains the reducible graphs and Z/j(12) the irreducible 
ones. The approximation of PY type is 

Z0.(12 ) = 0 (13) 

The g0(12) are related to the y~j(12) by 

g~y(12) = e,(12)[yq(12) + 8i,Sj,fA(12)YO0(12)] (14) 

Elimination of the yO(12) between (11)-(13) yields the closure equations 

e,(12)cq(12) = f,(lZ)gq(12) + 6iltj, goo(12)f4(12 ) (15) 

The graphs summed by combining (14) with (10) are simply related to the 
graphs summed by the PY equation for a fluid of density O interacting by 
f(12). To go from Cpy(12) or hpv(12 ) to our c,y(12) or ho(12 ) carry out the 
following operations on the PY-graphs. Take all ways of replacing each 
f0j)  by either f~ (9) or F(/j), with the proviso that each point may have at 
most one F-bond incident. Relabel field points with one incident F-bond 
by 90. Assign graph to e0(12 ) or h~j(12) according to the numbers i , j  of 
F-bonds incident at 1 and 2. 

We now derive an expression for the pressure p which is consistent 
with the appropriate generalization of the compressibility relation 

fl(Op/O}) = 1 - o f c(12)d(2) (16) 

which cannot be used, because the direct correlation function c(12) does 
not appear in our formalism. In order to obtain the required analog of (16) 
we use a representation of ln Z obtained by combining Equations (13) and 
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(17) of I, 

ln~  = f IP(1) - P(1)Co(1) - p0(1)cl(1)] d(1) + c ~~ (17) 

By using the definition of the c-hierarchy of functions in (28) of I we obtain 
for the variation of In 

8(ln-~) = f Sp(1)d(1) - f poi(1)c~j(12)6pjo(2)d(1)d(2) (18) 

This is the appropriate generalization of (16) in differential form. We can 
integrate over the variation p~ from P9 = 0 to the actual state. After 
integration by parts and insertion of the uniform system result In Z = tip V, 
we obtain 

# v  = f p(1)d(1) - k fPo,(1)co(12)pjo(2) d(1) d(2) 

+ �89 ffpo,(1) cy(12)Ojo(2)d(1)d(2) (19) 
8 

On the right hand side of (19) the integral sign with 6 below it indicates the 
integration over the variation. 

Further integration is possible provided we introduce expressions for 
the 8c0(12 ) implied by the closure approximation (14). We take a variation 
of the closure at constant fg(12) and fA(12), which implies constant pair 
potential and temperature. The closure equations are then used to eliminate 
fg (12) and fA (12). From the equations not containing f~ (12) we obtain 

g~,(12)6c~(12)-c~(12)Sg~(12)=O, for ~ 1 1 ,  f l ~ l l  (20) 

The equation which contains fA (12) yields the result 

goo(12)8c~(12) - Coo(12)8g,1(12 ) + g,,(12)8Coo(12) 

- c , , ( 1 2 ) 8 g 0 0 ( 1 2 )  = 0 ( 2 1 )  

Multiplied by appropriate p-factors and summed, these equations combine 
into the result 

pO.(1)pk,(2)I gjk(12)6ci,(12) - 8gj~(12)ci,(12)] = 0 (22) 

which is equivalent to 

po.(1)pk,(Z)I Cjk(lZ)6hi,(12) -- 6Cjk(12)hi,(12) ] = pO~(1)6C~j(12)Pjo(2) (23) 

The right-hand side of (23) is the term to be integrated over the variation 8 
in Eq. (19). In order to carry this out, a further transformation of the 
left-hand side of (23) is needed. 

We define two functions L and K, both of which consist of all rings of 
n/> 2 c-bonds, with p-factors interposed. In L the ring of n c-bonds has the 
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correct combinatorial weight 1/2n, while in K the weight is 1: 

L = ~ L./2n, K = ~ L. (24) 
n = 2  n = 2  

L .  = f c~(12)0+~(2) . . . cs,(n, 1)[Jti(1)d(1) . . . d ( l l )  (25) 

In taking a variation of Ln, 8 can act on any of n o's and n p's. In view of 
Eq. (9) we obtain 

2 ~ r  = f oo(1)o~ , (2)Sq~(12)h i , (12)  d(1) d(2)  

+ fso,+(1)[ hA11) - 0(11)] d(1) (26) 

The second term in (26) may be transformed using (10) for the special case 
of equal arguments, 

1 )  - co.(11) = fcik(12)O~,(2)h/,(12) d(2) (27) ho.(1 

The function K is given by 

K = roy  ( 1)Pk, (2) Cjk (12)hiz (12) d(1) d(2) (28) 

and its variation by 

3K = 2 f 6p~j ( 1)pk, (2) cjk (12) hi, (12) d(1) d(2) 

+ f pig(1)pk,(2)[ 6Ok(12)h+z(12 ) + qk(12)3hi,(12) ] d(1)d(2)  (29) 

Equations (26) and (29) can be combined so as to eliminate 6@. We obtain 
the result 

3( �89 K - 2L) = �89 f P~j(1)pkz(2)[ Cjk(12)3h+z(12 ) -- 6cjk(12)h,(12) ] d(1) d(2) 

(30) 
By using successively (23) and (30) for the last term of (19), we obtain a 
form that can be integrated over the variation. There is no contribution 
from the lower limit, p = 0, where K = L = 0. We obtain the desired result 
for the pressure: 

t" f lpV=jp(1)d(1)  - ~ j  + - 2L ol(1)cy( la)Pjo(a) d(1) d(2) (31) 

Note that the rings of two c-bonds, which contain forbidden graphs with 
duplication of the direct (12)-bond, cancel from the combination �89 K - 2L. 

The expression (28) for K may be replaced by the following alterna- 
tive, obtained by using (27) and the fact that the infinite repulsion for two 
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coincident particles enforces g/j(11) = 0: 

K = - f [p(1) + 20o(1) + Pij(1)cji(11)1 d(1) 

Wertheim 

(32) 

4.2. Integral Equation with Reference System 

It is reasonable to expect that we can improve on the preceding 
treatment if we can employ exact knowledge of the reference system of 
molecules at the P and T of the real system, but interacting only by the 
potential ~R(12), with Mayer function fR(12 ). Clearly, this is advantageous 
at high P and T, where the spatial exclusion is more important than the 
dimerization, since we are now calculating only the difference in spatial 
exclusion between the monomeric reference system and the real system. 
For low O, the reference system approach reduces to TPT, so that the exact 
treatment of low density, even if highly dimerized, is retained. 

The reference system is assumed to be known to the extent of A and 
pair distribution function gR(12), from which cR(12 ) can also be calculated. 
For any graphical quantity of the real system, all graphs consisting solely of 
fR-bonds constitute the reference system. For this reason, there no longer 
are any grounds for choosing an approximation of PY type, which has 
good cancellation between omitted graphs for repulsive f-bonds only. On 
the basis of successes of equations related to the H N C  equation, it seems 
more promising to resort to the larger graph sum of H N C  type. To this end 
one defines graph sums t/j(12) as follows: 

t0.(12 ) = all connected graphs without direct (12)-bond which remain 
connected when all connections at 1 and 2 are broken. There 
is at least one F-bond. 

With this definition, we can express the g,j(12) in terms of the t/j(12) and 
gR(12). In view of the restriction to at most one F-bond per point, we have 5 

g00(12) = gR (12)exp[ t0o(12) ] (33) 

gl0(12) = goo(12)tlo(12 ) (34) 

g11(12) = goo(12)[t,o(12)tol(12 ) + tll(12 ) + fA(12)] (35) 

The t,j(12) can be split into reducible and irreducible graphs as follows: 

t~j(12) = g/j(12) - cy(12) + EO(12 ) 

- ~;o6jo[ g .  (12) - c . (12 )  + E . ( 1 2 ) ]  (36) 

5 For  a review of g raph  theory see Ref. 7. 
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The approximation of H N C  type neglects the irreducible graphs E0.(12): 

E0.(12 ) - 8ioSjoER (12) = 0 (37) 

By imposing (37) and eliminating the t,y(12) between (33)-(35) and (36) we 
obtain the closure relations between the &(12) and the c~(12), 

Coo(12) - cR (12) = goo(12) - gR (12) - in[ goo(12)/gR(12)] (38) 

g0o(12)cm(12) = h0o(12) gin(12) (39) 

g00(12) [c , , (12) - fa (12) ]  = h00(12)g,~(12) 

+ g00(12)[ gin(12) - cl0(12)] [ g0,(12) - c0,(12)] (40) 

Equations (38)-(40) together with the exact relation (10) form a closed set 
of integral equations to be solved. 

The difference in Helmholtz free energies, A - AR, can be obtained by 
integrating 6A from the reference system to the real system as fa is turned 
on from zero to the actual function. This is done at constant p and ,8, so 
that all reference system quantities are constants of the process. Owing to 
the presence of Po and the subsidiary condition (1) more than one expres- 
sion for the integral of 8A can be given. By applying the variation to all 
terms in (7) and then using (1) we obtain a result which greatly resembles 
the standard one for the formalism in p alone: 

,8(A - AR) = -- k f f Oo(1)Oo(2)goo(12)afA(12)d(1)d(2) (41) 
8 

It turns out to be more appropriate to employ the alternative form obtained 
by taking the variation only of the graphical term c (~ The result reflects 
the fact that fA (12) occurs only in the combination O0(1)fa (12)00(2): 

,8(A - AR) = f [0(1)ln P~ - po(1) + p(1 ] d ( l )  

- �89 f ;  goo(12)8[po(1)f4(12)po(2)]d(1)d(2 ) (42) 

We now show that use of the closure approximation (38)-(40) makes it 
possible to express the integral over 8 in terms of the solutions of the 
integral equation at the end points. In order to do this, we need the ring 
sum L and a function 

J =  k � 8 9  1)L,= �89 (43) 
n = 2  

We take the variation of the combination J - 2L, which does not contain 
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the forbidden rings of two c-bonds. The result is 

8 J -  28L = M~ + M 2 (44) 

M, = f oo(1)Ok,(2)[  hj (12) - 6Cjk(12) ]h i , (12)d(1)d(2  ) (45) 

f60o(1)Ok,(2)hjk(12)hi,(12) d(1) d(2) M2 

hA1 l) - 9(11)] d(1) (46) 

In order to transform M 1 we must insert the expressions obtained by taking 
variations of the closure equations (38)-(40). Since p and fl are held 
constant, gR(12) and CR(12 ) do not contribute, and we obtain from (38) 

gooSCoo = hooSgoo (47) 

This result can be combined with the variations of (39) and (40) to yield 

goo6Clo + glo6Coo = hoo6g]o + g]oSgoo (48) 

goo6Cll + glo8Coo + gol6Clo + gll6coo 

= hoo6gll + gloSgol + glo6gol + gll6goo + goo6fA (49) 

We have omitted the arguments, which are (12) for every function in 
(47)-(49). These three equations can be summed with appropriate 0-factors 
to yield 

Oij(1)pk[(2)[ 8hjk(12) -- 8Cjk(12) ]hil(12) 

= Poi(1)Scij(12)Pjo(2) - O0(1)O0(2)goo(12)SfA(12) (50) 

It follows that we have 

Ml = fOos(1) 6c~j (12)pj0(2 ) d(1) d(2) 

- foo(1)po(2)goo(12)sfA (12) d(1) d(2) (51) 

In the expression (46) for M 2 we need to transform the second term using 
(27). Since the only nonvanishing elements of 800 are the off-diagonal ones 
PoJ = Pl0 = Po, there is always one F-bond incident on the point 1. The 
symmetry under interchange of indices, which holds for c/j(11) and h,)(11), 
can be used to ensure that this F-bond always appears in a factor cli(12 ) 
rather than h1~(12 ). In this way we find that 

M 2 = 2fSplo(1)Pij(2)[kl i (12 ) - c , i (12)]hoj(12)d(1)d(2  ) (52) 

From the closure equations (38)-(40) summed with appropriate o-factors 
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we obtain 

[ hli(12 ) - eli (12) ]hoj(12)O0-(2) 

and hence 

= c,i(12)p;o(2 ) + goo(12)f A(12)0o(2) (53) 

M 2 = f 6[ poi(1)Pjo(2) ] co- (12) d(1) d(2) 

+ fa[00(1)p0(2)] goo(12)fA(12)d(1)d(2) (54) 

M 1 and M 2 combine into the following result for 6.1 - 26L: 

6.1 - 26L = f 6 [  Poi(1)co-(12)pjo(2) ] d(1)d(2) 

- f gOO(12)6[OOl(1)fA (12)0o(2)] d(1)d(2) (55) 

This enables us to integrate Eq. (42) from the reference system to the real 
system, with the result 

f l ( A - A R ) = f [ p ( 1 ) l n  p~ 1 p(1) P~ + p(1) d(1) 

_ i fPo, (1) [ c,j (12) - 8,o8joc R (12) ] Pjo(2) d ( l )  d(2) 

+ �89 - JR ) - (L - LR) (56) 

4.3. Spherically Symmetric c)R(12 ) 

The integral equation schemes derived are sensible whether or not the 
repulsive potential cpR(12 ) is spherically symmetric. If it is so, ~bR(12) 
----~bR(rl2), then tremendous computational simplification occurs due to the 
restriction of at most one F-bond per point. As a result, the products of 
functions containing the labeled point i in either Eq. (9) or the closure 
equations (38)-(40) can have at most one factor which depends on ~i. 
Therefore, these equations may be integrated over the orientations. Their 
form remains unchanged, except for the following replacements in the 
arguments, with p standing for either c or h: 

= ~-2fPij(12) d~21 d~ 2 (57) pq(12) --->tiff (El2) 

Pij( a ) --~ Pij = Pij ~2, d(a) --~ dr~ (58) 

The integral equations now involve only spherically symmetric functions. 
The calculation of the ring sum L also becomes materially simplified. 
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We define 

cij( q ) = -~- fo~?ij(r)sin( qr)r dr (59) 

Bo(q) = %(q)Pkj (60) 

and denote the two eigenvalues of the matrix Bij(q ) by B+ (q) and B (q). 
Then the ring sum can be taken in the usual way, with the result 

L =  V f o ~ { - B k ( q ) - - I n [ 1  - Bk(q)]}qZdq (61) 
4r 2 k= - 

In order to secure the fastest fall-off at large q, it is advisable to use similar 
forms for J and K, so that the lowest power of Bk(q) in series expansion is 
B3(q). The explicit forms are 

 K-2L=  +2- f0 q2,tq 2~r2 ,_ 1 Z  B ~ )  + B k ( q ) + t n [ t  - B,;(q)]  

(62) 

L- v f0 I ( B (q) �89 
4~r 2 + , ~ -  211-~-~k(q)] z 

t 
- -  + Bk(q) + tn[ t  - Bk(q)]lqZd q 

(63) 

5. COMPLEX SYSTEMS 

Two ways of increasing the complexity of the model are (1) a single 
attractive site with longer-ranged attraction, so that several oligomers are 
allowed and non-negligible, and (2) presence of more than one molecular 
attraction site. 

The complication due to (1) can quickly become formidable. If we 
insist on including all the allowed oligomer graphs exactly, then it appears 
necessary to go to theories with higher distribution functions in order to get 
a graph sum capable of representing the mutual repulsion of oligomers at 
high densities. A more attractive alternative seems to be a scheme restricted 
to pair functions, with the closure of an integral equation generating the 
otigomer graphs. This involves approximations and partly destroys the 
optimal steric incompatibility" which arises from the fact that the s-mer 
graphs are "filled with e R bonds," (see I, Sections 4 and 8). A closely 
related difficulty is the fact that Eq. (2) for 00 must be replaced by a much 
more complicated expression. 
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The case of additional molecular attraction sites is highly dependent 
on the geometry. We will return to some sterically favorable cases in a 
future paper. 

6. CONCLUSION 

We have developed promising approximation schemes of two types for 
dimerizing systems of particles interacting by short-ranged repulsion and 
highly directional short-ranged attraction. For spherically symmetric repul- 
sion the ease of execution of these schemes is competitive with standard 
methods for multipolar fluids or mixtures of simple fluids. 
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